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Electromagnetic Spectrum

Credit:
Wikipedia Images
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Electromagnetic Spectrum
Need Complete View of the Universe

MS 0735.6+7421
• Cluster of galaxies

− About 2.6 billion 
light-years away

− In the 
constellation 
Camelopardalis

• Three views 
− Blue: Chandra 

X-ray 
Observatory 

− White: Hubble 
Space 
Telescope

− Red: Very Large 
Array
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Large radio antennas, equipped with 
sensitive (cryogenic) microwave receivers
• Spectroscopy

Complements ALMA, complements NASA and 
ESA far-infrared—sub-millimeter missions (e.g., 
Planck, Herschel, SOFIA)

• Very Long Baseline Interferometry (VLBI)
Complements VLBA, EVN, LBA; many NASA and 
ESA mission complements

• Time Domain 
Many NASA and ESA mission complements
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Analysis of 69 Green Bank Telescope (GBT) 
publications (2017)

• Spectroscopy: 38
• Time Domain: 21 
• Very Long Baseline Interferometry (VLBI): 

3
• Radar, Solar System: 3
• Instrumentation: 5
• Continuum/Theory/Other: 3



Credit: Griffith 
Observatory

Periodic Table
150 Year Anniversary!
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Chemical Elements
Periodic Table
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Hydrogen

Carbon

Oxygen

Credit: Griffith 
Observatory



Credit: C. Mihos

Radio Astronomy

Atoms and Quantitized Energy Levels
Hydrogen Energy Levels and Transitions
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Orion Nebula
Spectral Lines

Sulfer (S II, 673 nm) = red
Hydrogen Balmer-a (656 nm) = green
Oxygen (O III, 502 nm) = blue
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Fraunhofer Lines

Credit: Toon
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Molecules: More Quantitized Energy Levels

carbon 
monoxide 

(CO)

rotational 
transitions

vibrational 
transitions
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Molecules: More Quantitized Energy Levels

Water (H2O) Ammonia 
(NH3)

Credit: SoonLorpai
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Emission and Absorption and …

f

f
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… Amplification by the Stimulated Emission of Radiation
… Stimulated Emission

excited

ground

excited

ground

Light Amplification by the Stimulated Emission of Radiation (LASER)
Microwave Amplification by the Stimulated Emission of Radiation (MASER)
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Molecular Line Emission
Orion Nebula

ORION-KL

Rizzo et al.  in preparation, “The line 
emission of Orion-KL between 41 and 50 

GHz”
Most sensitive and widest spectrum of 
Orion KL between 6 and 7 mm. Obtained
with Q-band receiver and wideband
backend attached at DSS-54.
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Molecular Line Emission
Evolved Star Survey

SiO Q-band survey of 67 O-rich 
evolved stars with 66 transitions … 

1525 spectra!!

Rizzo, Garcia-Miro et al.  in 
preparation, “SiO, 29SiO, and 30SiO 

emission from O-rich stars: I. A 
survey of 61 rotational lines from 7 

to 1 mm”
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Molecular Line Stimulated Emission (MASER)
Hunting for Supermassive Black Holes

Kondratko, et al.  “Discovery of Water Maser 
Emission in Eight AGNs with 70 m Antennas of 

NASA's Deep Space Network,” ApJ, 638

NGC 4293

19



j p l . n a s a . g o v

Interstellar Chemistry

Radio Astronomy 20

First Detection of 3He+ in the Planetary 
Nebula IC 418
Stars like the Sun should produce lots of 
3He

Less 3He detected than expected

Ø Planetary Nebulae offer chance to check 
how much 3He made by low-mass stars

Ø Only 3rd detection of 3He+ in planetary 
nebulae, by Madrid DSN antenna

Atomic Line Emission

Guzman-Ramirez et al. 
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SOFIA [C II] 

DSS-43 H89a

Herschel [N II]

Pineda et al. 2019
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Large radio antennas, equipped with 
sensitive (cryogenic) microwave receivers
• Spectroscopy

Complements ALMA, complements NASA and 
ESA far-infrared—sub-millimeter missions (e.g., 
Planck, Herschel, SOFIA)

• Very Long Baseline Interferometry (VLBI)
Complements VLBA, EVN, LBA; many NASA and 
ESA mission complements

• Time Domain 
Many NASA and ESA mission complements
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∆DOR (Delta-Differential One-Way Range)
Spacecraft Navigation

∆DOR provides Plane-of-Sky 
information

• Complementary to line-of-sight 
from Doppler and range

• Essential beyond lunar 
distance

• Optical analogy is called 
“Optical Astrometry”; uses 
star catalog instead of quasars
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Pre-20th Century
Historical Background

Modest optical telescopes provide 
diffraction-limited imaging at 1 

arcsecond resolution
60⨉ better

Human eye capable of diffraction-
limited imaging of about 1 
arcminute

20/20 vision ~ U.S. quarter across 
football pitch

Credit: Micael W. Davidson, 
(Florida State Univ.)
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Can Two Stars Be Split?
Angular Resolution and Optics

Fundamental optics
q = l/D

• l = observing 
wavelength

• D = diameter of aperture

Credit:
Spencer Bliven
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Human Eye
Angular Resolution and Optics

• l ~ 550 nm (~ 0.00055 
mm) 
– observing wavelength
– green-yellow light

• D ~ 5 mm
– diameter of pupil 

(aperture)

ü q ~ 0.00011 radians ~ 
0.0063° ~ 0.4 
arcminutes
q = l/D
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Radio Telescopes
Angular Resolution and Optics

• l ~ 0.30 m (~ 1 GHz)
• D ~ 300 m

diameter of telescope

Ø q = 0.001 radians ~ 
0.06° ~ 3 arcminutes

q = l/D

! Your eye has higher 
angular resolution than 
Arecibo telescope!
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Radio Telescopes
Angular Resolution and Optics

Arecibo diameter ~ 300 m
⁇Match angular 

resolution of human 
eye ~ 1 km

⁇Match angular 
resolution of modest 
visible wavelength 
telescope ~ 10 km
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Radio Telescopes
Angular Resolution and Optics

Arecibo has hole in its 
middle!
How many holes can a 
telescope have and still 
work?
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How Do Telescopes Work?

Exercise for the reader:
Consider a parabolic surface.
Show that initially parallel light 
rays, all traveling at the speed of 
light c, reach a common point, 
the focus, at the same time no 
matter where they reflect from 
the surface of the reflector.

Extra credit: Repeat for a spherical 
reflector such as Arecibo and show 
that the focus is a line.
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1.Record signals at 
individual 
antennas

2.Bring them 
together “at the 
same time” 
(coherently)

3. Then …

Aperture Synthesis
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Interferometry or Aperture Synthesis

1. Record 
signals at 
individual 
antennas

2. Bring them 
together “at 
the same 
time” 
(coherently)

3. Synthesize 
aperture!
a.k.a. build 
telescope 
that’s mostly 
holes!
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Aperture Synthesis

incident (plane) wavefront

baseline b

ψ x
Extra path length:
x = b sin ψ

Geometric delay:
tg = x/c = (b/c) sinψ
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Aperture Synthesis

baseline b

ψ x

Extra path length:
x = b sin ψ

Geometric delay:
tg = x/c = (b/c) sin ψ

tg

⨉
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Aperture Synthesis

incident (plane) wavefront

baseline b

ψ x

Geometric delay:
tg = x/c = (b/c) sin ψ

Need to know 
where antennas are

Ø Knowledge, not 
control

Ø Only relative
positions
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Van Cittert-Zernike Theorem

Formal:
G(u,v) = V(u, v) = ∫ I(l, m)e−2pi(ul + vm) dl dm

Sky 
brightness

Mutual coherence 
function

a.k.a.
Visibility function

Fourier 
Transform

Assumptions
Narrow field of view
Co-planar array
Monochromatic signals (narrow 

bandwidths)
Instantaneous signal reception
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1974 Nobel Prize in Physics
Aperture Synthesis

The Nobel Prize in Physics 1974 
was awarded jointly to Sir Martin 
Ryle and Antony Hewish "for their 
pioneering research in radio 
astrophysics: Ryle for his 
observations and inventions, in 
particular of the aperture 
synthesis technique, and Hewish 
for his decisive role in the 
discovery of pulsars."
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Very Large Array
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Very Long Baseline Interferometry

Very Long 
Baseline Array

European 
VLBI Network



Radio Astronomy 39

Space-based Interferometry

How Small Can Radio 
Sources Be?

• By mid-1970s, clear that some radio sources 
still unresolved on terrestrial baselines

• Also superluminal motion
• Heuristically, if source too small, energy 

density not enough to be visible to terrestrial 
radio interferometers?
§ A.k.a. no free lunch theorem

As synthetic apertures, interferometers limited to 
observing bright sources, because telescope with lots of 
holes

§ Inverse Compton catastrophe
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Space Interferometry

“Very Long Baseline 
Interferometric 
Observations Made with an 
Orbiting Radio Telescope” 
(Levy et al., 1986 October 
10)
TDRSS-E + DSS-43 + Usuda

4.9 m-diameter 
TDRSS antenna

64 m-diameter 
Canberra DSCC

64 m-diameter 
ISAS antennaFrom Science, 1986 October 10. Reprinted with 

permission from AAAS.



Space Interferometry

Radio Astronomy
Pre-decisional - For planning and discussion purposes only. 41

HALCA RadioAstron

SunRISE concept

Millimeter-wave space-
based VLBI?

(Event Horizon Telescope to 
Event Horizon Imager)
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Conceptual Radio Telescope
Radio Astronomy
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Conceptual Radio Telescope

Collect faint 
radio 

radiation

100100

Amplify Filter Digitize Record*

*Today: Record to hard drive disk packs or even direct 
streaming across the Internet
Historical note:  Record on magnetic tapes, including 
VHS tapes
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Conceptual Radio Telescope

Collect faint 
radio 

radiation

100100

Amplify Filter Digitize Record

Amplify
• Signals are faint!
• Need to provide sufficient power 

for input to following stages of 
signal processing

• Typical levels of gain might be 
30 dB (1000⨉) or more

• Typically cryogenic to reduce 
“noise”
§ Use low noise amplifiers (LNAs)
§ Maintain at 77 K or lower
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“Noise”

Collect faint 
radio 

radiation

Amplify

Ø Thermodynamic equivalent between noise and power
P = kBTDn

kB = 1.38 ⨉ 10−23 J/K
Dn = bandwidth

Amplify

Resistor in 
heat bath at 

temperature T

=
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Frequency Conversion
Conceptual Radio Telescope

Collect faint 
radio 

radiation

100100

Amplify Filter Digitize Record

Local 
Oscillator

RF
Intermediate 
Frequency

(IF)
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Frequency Conversion
Conceptual Radio Telescope

Collect faint 
radio 

radiation

100100

Amplify Filter Digitize Record

Local 
Oscillator

RF
Intermediate 
Frequency

(IF)

cos(2pfRFt)cos(2pfLOt) = 
½ cos[2p(fRF−fLO)t] +
½ cos[2p(fRF+fLO)t]

fIF = fRF−fLO with fRF ≅ fLO
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Amplification and Filtering
Radio Telescope

Collect faint 
radio 

radiation

100100Digitize

Record

Analog 
Receiver Unit
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Conceptual Radio Telescope

Collect faint 
radio 

radiation

100100

Amplify Filter Digitize Record

Filter
• Avoid interference!
• Subsequent processing may 

need limited bandwidths
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Interference!



S-band
comm. & tracking

[deep space]

X-band 
comm. & 
tracking

[deep space]

Ka-band
comm. & 
tracking

[deep space]

52

Required Frequency Coverage
Spacecraft Communications

1 GHz 10 GHz

K-band
comm. & tracking

[cis-lunar]

30 GHz

Spectrum assignments agreed internationally

Radio Astronomy
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Conceptual Radio Telescope

Collect faint 
radio 

radiation

100100

Amplify Filter Digitize Record

Digitize
• Enables use of modern digital 

signal processing
• Better stability
• Enables error checking
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Conceptual Radio Telescope

Collect faint 
radio 

radiation

100100

Amplify Filter Digitize Record

Record
• Store data for additional 

subsequent processing
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Large radio antennas, equipped with 
sensitive (cryogenic) microwave receivers
• Spectroscopy

Complements ALMA, complements NASA and 
ESA far-infrared—sub-millimeter missions (e.g., 
Planck, Herschel, SOFIA)

• Very Long Baseline Interferometry (VLBI)
Complements VLBA, EVN, LBA; many NASA and 
ESA mission complements

• Time Domain 
Many NASA and ESA mission complements
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Aperture Synthesis Fundamentals

baseline b

ψ x

Output = 
sin(2pnt)sin[2pn(t-tg)]

tg

⨉
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Aperture Synthesis Fundamentals

baseline b

q x

t

⨉

tg = (b/c) sin ψ

Output = sin(2pnt)sin[2pn(t-tg)]

Output = sin2(2pnt)cos(2pntg) ➖ sin(2pnt)cos(2pnt)sin(2pntg)

Average for T >> 1/n or take nT >> 1

sin2(big number) → ½

sin(big number) = cos(big number) = 0

Ø Output = cos(2pntg)

Ø Output = cos(2p[b/l]sin ψ)
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Aperture Synthesis Fundamentals

baseline b

t

⨉
Output = Σl cos(2pul)

Synthetic aperture 
receives electro-
magnetic radiation 
from all directions
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Aperture Synthesis Fundamentals

baseline b

t

⨉tg = (b/c) sin ψ

Ø Output = cos(2p[b/l]sin ψ)

u = b/l and l = sin ψ

ψ x
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Aperture Synthesis Fundamentals

baseline b

t

⨉Ø Output = Σl cos(2pul)

u = b/l and l are Fourier conjugates

Ø Big u means small l; small u means big l

q = l/D
q → l
D = b

u = D/l
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Earth Rotation Synthesis

incident (plane) wavefront

baseline b

Geometric delay:
tg = x/c = (b/c) sin ψ

Ø From 
perspective of 
distant observer, 
array changes 
shape

ψ
x

ψ x


